Photovoltaic conversion of rare earth-doped BiFeO₃ multiferroic ceramics

Chi-Shun Tu¹, Li-Yun Chang¹, Chun-Yen Lin¹, V. H. Schmidt²

¹Department of Physics, Fu Jen Catholic University, New Taipei City 24205, Taiwan

²Department of Physics, Montana State University, Bozeman, MT 59717, USA

Large photovoltaic (PV) open-circuit voltage, short-circuit current density, and power-conversion efficiencies under illumination of λ =405 nm have been observed in the heterostructures of indium tin oxide (ITO)/(Bi_{1-x}R_x)FeO₃ ceramic/Au (R=La, Nd, Sm, Eu, Gd, and Dy) for x=0.0-0.07. (Bi_{1-x}R_x)FeO₃ ceramics were prepared by the solid state reaction method. ITO and Au films were deposited using sputtering deposition. The PV effects and power-conversion efficiency strongly depend on doping concentration, illumination intensity, and ceramic thickness. For instance, the maximal open-circuit voltages (V_{oc}) and short-circuit current densities (J_{sc}) in ITO/($Bi_{0.95}Nd_{0.05}$)FeO₃ ceramic/Au can reach 0.8-0.92 V and 1-5 A/m². The maximal power-conversion efficiency (PCE) and external quantum efficiencies (EQE) in the ITO/(Bi0.95Nd0.05)FeO3/Au structure reach respectively 0.82% and 1.4% under illumination of λ =405 nm. The light-to-electric PCE is calculated as PCE=P_{out}/P_{in}, where P_{out}=J_L×V_L is the photovoltaic output power density (W/m^2) and P_{in} is the illumination intensity. J_L and V_L are respectively load current density and load voltage under illumination. The maximal PCE in the ITO/(Bi_{0.95}Nd_{0.05})FeO₃/Au under standard solar irradiation is about 0.025%, which is larger than 0.005% in (La_{0.7}Sr_{0.3})MnO₃/(Pb_{0.97}La_{0.03})(Zr_{0.52}Ti_{0.48})O₃/Nb-SrTiO₃ films under sunlight [1], 0.0025% in graphene/ polycrystalline BFO/Pt films under AM 1.5 irradiation [2], and 0.01% in ITO/BFO/BiCrO₃/CaRuO₃/ LaAlO₃ films under a solar simulator [3].

Figure 1 Ceramic disk with ITO electrode, optical transmission of ITO, and TEM image near the interface between ITO and ceramic.

Figure 2 Open-circuit voltage V_{oc} and short-circuit current density J_{sc} as light was switched on and off with increasing incident intensity (in unit of W/m²) ¹labeled above the tops of illumination plateaus.

The characteristic curves (current i vs. voltage V) in the dark can be expressed as

$$i_{d} = i_{o} \{ \exp[q(V - i_{d}R_{d}) / \xi kT] - 1 \}.$$
(1)

where i_d , R_d and ξ are the diode current, diode resistance, and diode-quality factor. The asymmetrical characteristic curves suggest that the heterojunction between ITO film and $(Bi_{1-x}R_x)FeO_3$ ceramics is responsible for the photovoltaic responses.

To determine the oxidation states of Fe and Bi ions in $(Bi_{1-x}R_x)FeO_3$ perovskite, Fe K-edge and Bi L_{III}-edge X-ray absorption near-edge structure (XANES) spectra were measured. The results reveal that the valences of Fe and Bi ions in BFO and $(Bi_{1-x}R_x)FeO_3$ are +3 and also rules out the presence of the other bismuth ferrite secondary phases. The $k^2\chi(k)$ spectra of BFO and $(Bi_{1-x}R_x)FeO_3$ are similar and suggest that A-site R³⁺ substitution does not affect structural order. The Fourier transforms of extended X-ray absorption fine structure (EXAFS) spectra were also studied to identify interatomic distances of F–O and Bi–O bonds in $(Bi_{1-x}R_x)FeO_3$ compounds.

The micro-Raman spectra were obtained to identify rare earth doped effects of atomic vibrations. The Raman active modes of rhombohedral R3c for BiFeO₃ can be summarized as the following irreducible representation: Γ =4A₁+9E [4,5]. Bi atoms participate mainly in the low-frequency modes below 170 cm⁻¹ and Fe atoms involve in the vibration modes in the region of 150-270 cm⁻¹. Oxygen motions strongly dominate in modes above 260 cm⁻¹. The four lowest and strongest vibrations can be attributed to *E*(1) mode near 67 cm⁻¹, *E*(LO2) mode near 130 cm⁻¹, *A*₁(LO1) mode near 170 cm⁻¹, and *A*₁(LO2) mode near 220 cm⁻¹. The atomic vibrations near 220 cm⁻¹ are mainly originated from the A₁ tilt mode of FeO₆ oxygen octahedral.

References:

- [1] M. Qin, K. Yao, and Y. C. Liang, Appl. Phys. Lett. 93, 122904 (2008).
- [2] Y. Zang, D. Xie, X. Wu, Y. Chen, Y. Lin, M. Li, H. Tian, X. Li, Z. Li, H. Zhu, H. T. Ren, and D. Plant, *Appl. Phys. Lett.* **99**, 132904 (2011).
- [3] J. Chakrabartty, R. Nechache, S. Li, M. Nicklaus, A. Ruediger, and F. Rosei, J. Am. Ceram. Soc. 97, 1837 (2014).
- [4] P. Hermet, M. Gofinet, J. Kreisel, and Ph. Ghosez, *Phys. Rev. B* 75, 220102(R) (2007).
- [5] J. Bielecki, P. Svedlindh, D. T. Tibebu, S. Cai, and S.-G. Eriksson, Phys. Rev. B 86, 184422 (2012).